Physiologic Assessment of Coronary Artery

Myeong-Ho Yoon

Ajou University, School of Medicine, Department of Cardiology, Suwon, Korea

Concept of FFR related to pressure measurements

Prognostic significance of reversible ischemia at MIBI-Spect

% Average Annual Hard Events

Iskander S et al, JACC 1998

Non-Invasive Stress Testing and PCI

Exercise Test Performed Before Angioplasty

NO Exercise Test Performed Before Angioplasty

Topol et al. Circulation 1993

Conceptual limitations of non-invasive testing:

- **Diagnostic accuracy not optimal**, especially not in intermediate stenosis
- Limited spatial resolution, especially in patients with more complex disease (unfortunately quite common nowadays):
 - multivessel disease
 - several stenoses within the same artery
 - uncertainty about exact perfusion territories
- No discrimination between epicardial vs microvascular disease or local stenosis vs diffuse epicardial disease

Practical reasons why non-invasive testing is often not performed:

- Needs to be performed in *another department* (MIBI-Spect)
- Patient is already on the table for diagnostic angiography and the interventionalist wants to proceed immediately
- Increasing numbers of *acute patients* in the cathlab (with often multiple lesions)
- Financial considerations, shortening of hospital stay

Assessing Stenosis Severity in the Catheterization Laboratory

Quantitative Coronary Angiography

- Limitations
- applicable in only a minority of stenoses
- reference segment = normal
- not all dimensions taken into account
- physiologic parameters not taken into account
- collaterals not taken into account

Not very helpful for clinical decision making.

FFR (Myocardial Fractional Flow Reserve): a Flow Index Derived from Pressures max FFR **P**_d **P**_a $\mathbf{P}_{\mathbf{v}}$ Ν max $(P_d - P_v) / R_{myo}$ RRR $(P_a - P_v) / R_{myo}$

Normal Value of FFR

Normal FFR = 1

Ischemic FFR = 0.75

Coronary Pressure Measurements

Prerequisits

1. Pressure Measuring Guide Wire

2. Maximal Hyperemia

3. FFR instead of $\triangle \mathbf{P}$

Pressure Monitoring Guide Wire

Pressure Monitoring Guide Wire

Hyperemia - administration

- Hyperemic stimuli
 - Intravenous Adenosine 140-160 μg/kg/min
 Intracoronary Adenosine LCA: 20-40 μg
 RCA: 15-30 μg
 - Intracoronary Adenosine Infusion

FFR: Unique Features

FFR_{myo} ...

is a lesion specific index is independent of hemodynamic parameters has a normal value of 1.0 takes into account collateral flow has no need for a normal control artery can be easily obtained: $FFR_{mvo} = P_d / P_a$

Pitfalls related to pressure measurements

Pitfalls, The "Height effect"

- The proximal pressure is normally measured through the liquid column in a guiding catheter
 - External pressure sensor must be fixed level with the heart

- 13 mm difference in height (h) will produce an error of 1 mm Hg.
- Place the sensor close to the tip of the guide catheter.
- Adjust the height of the external pressure transducer, until signals are equal.

Pijls and De Bruyne "Coronary Pressure" Kluwer Academic Publishers 1997, pp110.

Importance of the Height of the Transducer

Pressure leakage through RHV / Guidewire Introducer

Cause

Minimal leakage from RHV = pressure loss from guiding catheter (typically 5-8 mmHg)

Can occur if RHV is tightened with g.w. introducer still in place

Effect

Pa under-estimated

FFR over-estimated

Recommendations, Guiding Catheter Size

Diagnostic case: Interventional case: 6 F or 7 F 7 F

Too small damped aortic signal through the guiding catheter Too big partial occlusion/restriction of coronary blood flow

FFR and Guidings with Side-Holes

When wedging of the catheter, withdraw guiding from ostium For flow or pressure measurements: NO SIDE-HOLES

Guiding Catheter With Sides Holes

Sensor proximal to side holes

Guiding Catheter With Sides Holes

Sensor in the proximal RCA

Guiding Catheter With Sides Holes

Sensor in the proximal RCA + Papaverine

Guiding Catheters with Sideholes

If it is essential ...

Beware of signal misinterpretation

Withdraw guiding catheter from ostium during measurements

Do not use i.c. hyperemic stimulus

Use i.v. hyperemia stimulus and withdraw the guiding catheter from the ostium during measurement.

Choice of hyperemic stimuli

Intra coronary

Guiding catheter position Guiding catheter side-holes Too quick (3rd pressure line)

Intra venous

Femoral vein only High volume infusion pump

Intracoronary Bolus of Adenosine

Intravenous Infusion of Adenosine 140 µg/kg/min

Intravenous Infusion of Adenosine

Pull-back Curve

Slow pull-back of sensor across stenosis during steady state maximum hyperemia

Most reliable and reproducible way to determine exactly the physiologic significance

Reproducible, without withdrawing the wire from the stenosis

(only the sensor moves across the lesion, the tip of the wire remain distally)

Example of Pullback Curve

distal stenosis proximal stenosis

Pull-back curve at maximum hyperemia (i.v. adenosine infusion)

Wedging of the Guiding Catheter: Importance of Flow

Influence of the Guiding in the Ostium

Influence of the Guiding in the Ostium

Drift of the Pressure Sensor

Clinical Applications of FFR related to pressure measurements

Clinical Applications

DEFER STUDY

DEFER Study: 2 year Event-free Survival Event rate per year for non-significant lesion is 5 %

Bech GJ, Circulation 2001; 103 : 2928-34

Coronary Pressure Measurement in Complex PCI

This means:

Detailed spatial and segmental information on the functional impact of the disease is paramount for optimum benefit of PCI :

- Which of several arteries are culprit?
- Selection of culprit spots and segments within a unparticulary artery
- Is it focal epicardial or diffuse or microvascular disease that causes the ischemia

Coronary Pressure Measurement

Clinical Implication of FFR

	IVUS	FFR
Native CAD	MLD ≥1.8 mm	≥0.75-0.8
	MLA \geq 4.0 mm ²	
Left main	MLD ≥2.8 mm	≥0.75
	MLA \geq 5.9 mm ²	
Serial lesions	Assesses anatomic severity along the length of the artery	Relative contribution of each stenosis on pullback method
SVG	Identifies severe lesion and tissue characteristics. Helps identify when to use distal protection device	No data for FFR in SVG; data correlating rCFR with SPECT available
Ostial lesions	Helps locate ostial-aorta juncture and correct stent position	≥0.75
Acute MI	Demonstrates plaque burden	Limited data
Bifurcation lesions	Assesses size of main and side branch, adequacy of results	≥0.75

Conclusion

- 1. FFR can be measured successfully in most cases and extremely reproducible.
- FFR < 0.75 always indicates inducible ischemia and >0.80 excludes ischemia in 91 % of the cases -FFR assessment can be used direct PCI only ischemic, flow-limiting lesions.
- 3. FFR has a prognostic value in post-stenting and normalization of FFR after stenting was accompanied by a restenosis rate of <5% at six-month follow up.
- 4. FFR can be useful in more complex and extensive coronary disease.